

REFERENCE PHENOMENA

Prof. Jesús Vilares

jesus.vilares@udc.es

Introduction

Reference resolution: determining what entities are referred to by which linguistic expression

REFERRING EXPRESSIONS

"Barack Obama" "president Obama"

REFERRING EXPRESSIONS

"Chinese president Xi Jinping" "he"

"The Chinese president"

Tasks

- We describe two reference resolution tasks:
 - 1. [Pronominal] anaphora resolution: given a pronoun in a text, finding the NP of the text referred by the pronoun (i.e. finding its *antecedent*)

"Chinese president Xi Jinping was due to (...) in which he will aim to reassure (...) "

2. [General] coreference resolution: finding all referring expressions (NPs) in a text that refer to the same real-world entity (i.e. finding expressions that corefer)

"Barack Obama" "president Obama"

"Chinese president Xi Jinping" "he"

"The Chinese president"

- Requires a hand-labeled training corpus where each pronoun has been linked by hand with its correct antecedent (NP).
- A classifier is trained using positive and negative examples of anaphoric relations:
 - Positive examples: those already labeled in the corpus
- "Chinese president Xi Jinping was due to (...) in which he will aim to reassure (...) "
 - Negative examples: obtained by pairing the pronouns in the corpus with other NPs of their previous contexts different from their respective antecedents
- "(...) with Barack Obama on Thursday night, in which he will aim to reassure (...) "

- Number agreement: pronoun and antecedent NP must agree in number.
 - e.g. Mary has adopted <u>two puppies</u>. <u>They</u> are lovely! Mary has adopted <u>two puppies</u>. <u>She</u> is lovely!
- 2. **Gender agreement**: pronoun and antecedent NP must agree in *gender*.
 - e.g. <u>John</u> married Mary last year. <u>He</u> is very lucky. <u>John</u> married Mary last year. <u>She</u> is very lucky.
- 3. **Person agreement**: pronoun and antecedent NP must agree in *grammatical person*.
 - e.g. The boys lost contact with John and me. They were worried.

 The boys lost contact with John and me. We were worried.

Features & restrictions

4. **Binding Theory constraints**: when pronoun and antecedent NP occur in the same sentence, they may be constrained by their *syntactic relationship*.

```
e.g. <u>John</u> said that <u>Bill</u> bought <u>him</u> a new car. [him ≠ Bill] <u>John</u> said that <u>Bill</u> bought <u>himself</u> a new car. [himself = Bill]
```

- 5. **Distance**: the further pronoun and its candidate antecedent are, the less probable they are connected through a reference.
 - Different measure units: no. of words in-between both, no. of NPs in-between, no. of sentences, etc.

e.g. Lex bought <u>a Ford</u> and Mike <u>an Opel</u>. <u>It</u> has a diesel engine.

- 6. **Selectional restrictions**: semantic-type constraints that a verb imposes on the kind of concepts that are allowed to be its arguments
 - e.g. Olga sat on the car, took her sandwich and began to ate it.
 - "it" is being eaten ("to ate it")
 - To eat something, it must be eatable
 - Two candidates: "the car", "her sandwich"
 - A "car" is not eatable; thus, it is not a valid candidate
 - but a "sandwich" is eatable

Training

Reference resolution

[General] Coreference resolution

- Now any pair of NPs may corefer.
- Requires a hand-labeled training corpus where each referring expression (NP) has been linked by hand with its correct antecedent (other NP).
- A classifier is trained using positive and negative examples of anaphoric relations:
 - Positive examples: those already labeled in the corpus
 " (...) dinner with Barack Obama (...) to reassure president Obama about (...) "
 - Negative examples: obtained by pairing the anaphor NPs of the positive examples with those preceding NPs between themselves and their respective correct antecedents.
 - "(...) in which he will aim to reassure president Obama about (...) "

[General] Coreference resolution:

- The same as for pronominal anaphora and some others
- 1. **String similarity** between the potential antecedent and the anaphor NP. For example, **minimum edit distances** from the potential antecedent to the anaphor NP and viceversa.
 - Note: The minimum edit distance from string A to string B is the minimum number of character editing operations (removals, insertions and substitutions) needed to transform A into B.

```
e.g. (...) than Cristiano Ronaldo or Lionel Messi. Leo Messi, however (...)

_ "Lionel Messi" ~ "Leo Messi"

"Cristiano Ronaldo" ≠ "Leo Messi"
```


[General] Coreference resolution:

- 2. **Alias** (NER required): given two named entities (A,B) of the same type, A is an *alias* of B if they can be matched by applying a given set of possible operations. For example:
 - PERSON: by removing titles (e.g. "Mr."), posts (e.g. "president"), etc.
 - e.g. <u>Trump</u> met Kim Jong Un. <u>President Trump</u> has travelled to (...)

 "<u>President Trump</u>" → "Trump" = "Trump"
 - ORGANIZATION: by checking for acronyms, etc.
 - e.g. "European Union" ↔ "EU"
- 3. Apposition: two NPs linked through syntactic apposition.
 - e.g. The ex-President of the USA, Barack Obama, has visited (...)

Bibliography

- [Jurafsky & Martin, 2009] Jurafsky, D. & Martin, J.H. (2009). Chapter 21: Computational Discourse. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (2nd ed.). Pearson-Prentice Hall.
- [Mitkov, 2002] Mitkov, R. (2002). *Anaphora Resolution*. Pearson Education.
- [Mitkov, 2010] Mitkov, R. (2010). Chapter 21: Discourse Processing. In Clark, A., Fox, C. & Lappin, S. (Eds.), The Handbook of Computational Linguistics and Natural Language Processing. Wiley-Blackwell.
- [Nugues, 2006] Nugues, P.M. (2006). Chapter 14: Discourse. *An Introduction to Language Processing with Perl and Prolog*. Springer.